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Abstract
We present a study of the magnetic properties of the itinerant-electron systems Ni3Al and
Ni3Ga at ambient pressure. In both compounds the magnetization and susceptibility show a
non-Fermi liquid form. We test these properties using a mean-field model of enhanced spin
fluctuations on the border of ferromagnetism in three dimensions with no adjustable parameters.
While Ni3Al is found to be explained well by the standard form of such a model, the data on
Ni3Ga require us to extend the model to take into account the fact that this system lies close to a
tri-critical point. We suggest that such a quantum tri-critical point may be a key feature in the
understanding of quantum critical systems more generally.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The standard model of metals, Landau Fermi liquid theory, has
been used as the basis of understanding metallic properties at
low temperatures for over 50 years. However, the properties of
metals near to magnetic phase transitions at low temperatures
are often found to deviate from those predicted by this standard
model. In order to understand this deviation from Fermi liquid
theory we need to consider relatively simple materials which
show such behavior and seek a description of them using a
simple model.

Some of the simplest systems which show a ferromagnetic
to paramagnetic phase transition at low temperature are the
d-electron systems, including Ni3Al, Ni3Ga, ZrZn2, MnSi
and CoS2. The advantage of such systems is that they are
itinerant in nature and have a small spin–orbit interaction.
The theoretical analysis of such systems has a long history
and was originally based on the so called Stoner–Edwards–
Wohlfarth theory [1, 2] of itinerant ferromagnetism and later
on a mean-field treatment of the effects of strongly enhanced
spin fluctuations (para-magnons) [3–6]. This latter model
is often called the self-consistent renormalization or SCR
model. For a metal on the border of ferromagnetism in three
spatial dimensions (3D) this model predicts a T 4/3 temperature
dependence of the inverse susceptibility, compared to the
conventional T 2 form expected from Landau Fermi liquid
theory.

In this paper we examine the low-temperature magnetic
properties of the ferromagnet Ni3Al and its close paramagnetic
relative, Ni3Ga. Ni3Al can be prepared in a pure stoichiometric
form and crystallizes in a simple cubic (Cu3Au) structure. At
ambient pressure it orders ferromagnetically below 41 K with a
small average moment of 0.075μB/Ni in the low-temperature,
low magnetic field limit [7, 8]. The ferromagnetism is
suppressed by the application of hydrostatic pressure and
Ni3Al is found to become paramagnetic above 82 kbar [9].
By contrast Ni3Ga, which has the same crystal structure and a
similar electronic structure [10], lies on the paramagnetic side
of the quantum critical point. Therefore, these two materials
form a good basis on which to test the SCR model in both the
ferromagnetic and paramagnetic state.

Ni3Al and Ni3Ga have been the subject of many
investigations which show the importance of spin fluctuations
in these systems. In particular, de Haas van Alphen
studies [11–13] show the itinerant nature of the magnetism and
neutron scattering measurements [14–16] show a para-magnon
spectrum which is consistent with the SCR model and allow an
evaluation of the model parameters.

In terms of the low-temperature magnetization and sus-
ceptibility, which concern us in this letter, past measure-
ments of Ni3Al [7, 17] seem broadly consistent with the SCR
model [18]. However, the limited measurements of the low-
temperature inverse susceptibility of Ni3Ga [7, 19] appear to
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show a temperature dependence similar to T 2. This seems to
be in contradiction to the SCR model which predicts a T 4/3

dependence. Therefore, in this paper we re-examine the low-
temperature magnetization and susceptibility of high-quality
(RRR � 40) stoichiometric single crystals of Ni3Al and Ni3Ga.
Our main aim is to explore the possibility of understanding
something other than a T 4/3 temperature dependence of the in-
verse susceptibility for a paramagnetic material near the border
of ferromagnetism. To do this we compare these measurements
directly with calculations based on the simple SCR model with
no adjustable parameters. While we recognize the more recent
theoretical works that show that there should be non-analytic
corrections to certain aspects of the SCR model [20–22], we
believe that we can still gain some important insight into the
problem by a comparison with the basic SCR model. In partic-
ular, the major effects of these corrections are to alter the form
of the zero-temperature equation of state and the momentum
dependence of the susceptibility. In what follows both of these
quantities are taken from experiment and we believe there is
still value in using an SCR approach to calculate the effect of
thermal fluctuations on the finite-temperature properties.

2. The self-consistent renormalization model

We now give the barest outline of the key ideas within the
self-consistent renormalization (SCR) model in order to define
the model and the model parameters so that we may compare
its predictions directly with experiment. We focus on a
paramagnetic system close to the border of ferromagnetism and
follow the convention of [18].

It is assumed that in the low-T limit the magnetization
M(r) in a weak applied magnetic field H(r) is given by a
Ginzberg–Landau equation of the form

H = aM + bM3 − c∇2M, (1)

where M3 = (M · M)M and a, b and c are positive constants
for a fixed pressure. We also assume that the relaxation of
a fluctuation in the magnetization is controlled by Landau
damping, i.e. that a Fourier component Mq(t) of M(r, t)
decays exponentially to the value given by equation (1) via a
relaxation function that is given by γ q where γ is a constant
and q = |q|. Thus, within this model the state of our system
at zero temperature is defined by four parameters: a, b, c
and γ . The parameters a and b can be determined from the
zero-temperature limit of the magnetization measurements as
a function of magnetic field and c and γ can be extracted from
inelastic neutron scattering measurements.

The temperature dependence of the magnetic equation
of state is assumed to arise primarily from the effect of
strongly enhanced long-wavelength spin fluctuations. The
effect of these fluctuations, to lowest order in the paramagnetic
state with no applied field, is to renormalize the linear
coefficient in equation (1) (which represents the inverse
uniform susceptibility), i.e.

a → A(T ) = a + 5
3 b m2, (2)
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Figure 1. The main panel shows H/M (the dimensionless inverse
volume susceptibility in c.g.s. units of Oe/(emu cm−3)) versus M2

for Ni3Al at 1.8 K for magnetic fields up to 70 kOe (7 T). The
linearity of this plot demonstrates the applicability of the form of the
equation of state given in equation (1) and allows determination of
the parameters a and b. The inset shows the simple cubic crystal
structure of Ni3Al and Ni3Ga.

where
m2 =

∑

q

m2
q . (3)

m2
q is the thermal variance of a Fourier component of the

fluctuating component of the magnetization defined by the
fluctuation-dissipation theorem:

m2
q = 2h̄

π

∫ ∞

0
dω nω Im χqω. (4)

Here, nω is the Bose function and χqω is the wavevector and
frequency-dependent susceptibility. Note that we have not
included the zero-point contribution [18]. In the SCR model
we have over-damped fluctuations defined by

χ−1
qω (T ) = A(T ) + cq2 − iω

γ q
, (5)

where the parameters c and γ can be estimated from inelastic
neutron scattering measurements. Equations (2)–(5) can be
solved self-consistently to give the temperature dependence of
the inverse susceptibility, χ−1 = A. We emphasize that the
temperature dependence of the susceptibility is obtained using
only the four, non-adjustable, zero-temperature parameters.
In the ferromagnetic case the situation is slightly more
complicated as we have to consider the longitudinal and
transverse fluctuations separately; this situation is described
elsewhere [18].

3. Ni3Al

We first consider magnetization measurements performed on a
high-purity single crystal of Ni3Al using an MPMS SQUID
magnetometer. The sample had a resistivity ratio of 50;
details of the sample preparation can be found elsewhere [11].
Figure 1 shows that the dependence of the magnetization,
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Figure 2. The zero-field magnetization, M , (crosses) and inverse
volume susceptibility, χ−1, (squares) of Ni3Al versus temperature.
These plots were derived by extrapolation of the linear fits to the
Arrott plots at each temperature. The red and blue solid lines show
the same quantities calculated within the SCR model using
equations (2)–(5). The parameters a = −1250 and b = 0.57G−2

were determined from the 1.8 K Arrott plot in figure 1. The
parameters c ≈ 1.5 × 105 Å

2
and h̄γ ≈ 3.3 μeV Å were estimated

from inelastic neutron scattering measurements [14].

M , of Ni3Al on the applied magnetic field, H , in the low-
temperature limit is well described by the equation of state
given in equation (1). Here and below H and M refer to the
magnitude of H and M as we assume an isotropic system.
Using linear fits to the plots of H/M against M2 for each
temperature we can obtain the temperature dependence of
the zero-field magnetization, and the inverse susceptibility
above TC as shown in figure 2. This shows the transition
temperature to be just under 43 K. Also, from the linear inverse
susceptibility at high temperatures we may derive the effective
Curie–Weiss type moment to be around 17 times the low-
temperature moment.

We can now compare this experimental data with the SCR
model outlined above. Figure 2 shows the predictions of the
model, with parameters relevant to Ni3Al, plotted on top of the
experimental data. For a model with no adjustable parameters
the agreement is excellent. In particular, TC is predicted within
5% and the form of the magnetization and susceptibility are
in good agreement. The main quantitative discrepancy is the
slope of the inverse susceptibility above TC. These broad
conclusions were reached in an earlier comparison [18].

4. Ni3Ga

We now move on to consider Ni3Ga, the paramagnetic cousin
of Ni3Al. Magnetization measurements were also carried out
on a high-purity single crystal of Ni3Ga. The sample had a
resistivity ratio of 40; details of the sample preparation can
be found elsewhere [13]. The dependences of the inverse
susceptibility with temperature at several fields up to 7 T were
measured. In figure 3 we show the data for fields of 1 kOe
(0.1 T) and 10 kOe (1 T). The fact that these two lie on top of
one another means that below 1 T we are essentially in the low-
field limit; this is assumed in the following analysis. According

1800

2000

2200

2400

2600

2800

3000

H
/M

[c
.g

.s
.u

ni
ts

]

Ni
3
Ga

2000

3000

0 1000 2000 3000
T2 [K2]

H
/M

T [K]

Figure 3. The dimensionless inverse volume susceptibility (H/M in
c.g.s. units of Oe/(emu cm−3)) against temperature, T , at a field of
10 kOe (closed circles) and 1 kOe (open circles) for Ni3Ga. The inset
shows the same data plotted against T 2.
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Figure 4. The main panel shows H/M (the inverse volume
susceptibility in c.g.s. units of Oe/(emu cm−3)) versus M2 at 1.8 K
for magnetic fields up to 70 kOe (7 T). In contrast to Ni3Al the severe
non-linearity of this plot shows that the equation of state given in
equation (1) is not sufficient for Ni3Ga. The inset shows Arrott plots
at several higher temperatures, demonstrating that these plots become
more linear at higher temperatures.

to the SCR model, the effect of thermal fluctuations on the
zero-temperature equation of state, H/M = a+bM2, is to give
a dependence of the inverse susceptibility in the paramagnetic
state given, for zero applied field, by equation (2). For a
nearly ferromagnetic system such as Ni3Ga, m2 is predicted to
vary with temperature as T 4/3, thus χ−1 should vary as T 4/3.
However, as shown by the inset to figure 3, in this case the
temperature dependence is much closer to a T 2 form. This
result, which was seen in previous measurements, seems to be
in sharp contradiction to the SCR model and is puzzling. A
careful study of the low-temperature equation of state points
toward a solution to this mystery. Figure 4 shows that the
simple form of the equation of state given in equation (1),
namely that H/M = a + bM2, is not valid in this case.
Therefore, we must include the next term in the expansion of
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the equation of state, such that:

H = aM + bM3 − c∇2M + gM5. (6)

If we now add in the effects of fluctuations in the same way as
for the standard SCR model then the coefficients, a and b, are
renormalized in the following way:

a → A(T ) = a + 5
3 b m2 + 35

9 g m2
2
. (7)

b → B(T ) = b + 14
3 g m2. (8)

So, if b is small, χ−1, which is equal to A in the paramagnetic
state for no applied field, will vary as (T 4/3)2. This may
provide an explanation for observed temperature dependence
of the susceptibility in Ni3Ga. We can calculate this
more quantitatively within this extended version of the SCR
model. Figure 5 shows the experimental data compared with
calculations based on (i) the initial equation of state given
by equation (1) and (ii) the extended version of the equation
of state given by equation (6) in which the mode coupling
parameter b is close to zero. We should point out that these
calculated results depend on the range over which the fit to
the low-temperature equation of state is performed and so the
exact magnitude of the predictions should not be taken too
seriously. However, it is clear from figure 5 that the case
in which the mode coupling parameter, b, is close to zero
gives a much better explanation of the data. In particular
this explains the anomalous temperature dependence of the
susceptibility. This suggests that the mode coupling parameter,
b, is close to zero indicating that the system is reasonably
close to a tri-critical point (the point where A = 0 and
B = 0). In addition, the fact that the higher-temperature Arrott
plots become linear is also qualitatively consistent as at higher
temperatures the B parameter becomes positive (due to the
temperature dependence given in equation (8)) and so the bM2

term begins to dominate over the higher order gM4 term.

5. Conclusion

The main conclusion of this letter is that the temperature
dependence of the susceptibility in Ni3Ga is affected by the
tri-critical point and is consistent with its presence.

Previously, the temperature dependence of the inverse
susceptibility in Ni3Ga was thought to contradict the SCR
model as the temperature dependence was T 2 rather than the
expected T 4/3. However, it has been shown here that this
behavior can be explained by a SCR approach if the proximity
of the system to a quantum tri-critical point is taken into
account. Although we have not directly taken into account the
non-analytic corrections to the SCR model we are in no way
dismissing their importance. By using higher order terms in the
expansion for the equation of state we have sought to capture
some of the physics that these non-analytic corrections contain.
While using an analytic expansion for a non-analytic function
is clearly ultimately invalid we believe it is still of value as
it enables a relatively simple comparison between theory and
experiment.
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Figure 5. The inverse volume susceptibility against temperature for
Ni3Ga. The experimental data, shown as black circles, are compared
with the susceptibility calculated using equation (2) (blue dotted line)
with a = 1920 and b = 0.38 G−2 (with b taken from previous
measurements at higher temperature [23]) and that calculated using
equation (7) (red line) with a = 1920, b = −0.1 G−2, and
g = 1.5 × 10−4 G−4 (where these parameters are taken from a fit of
the form H/M = a + bM2 + gM4 to the data given in figure 4). In
both the calculations the parameters c ≈ 1.0 × 105 Å

2
and

h̄γ ≈ 3.0 μeV Å were estimated from inelastic neutron scattering
measurements.

Our indirect evidence for the tri-critical point is consistent
with what has been seen in several other systems on the border
or magnetism [24, 25]. As we have said, the prevalence of
such a point may result from the non-analytic corrections to
the magnetic equation of state in the SCR model mentioned
above. In addition, band structure effects such as proximity to
a van-Hove singularity may also add additional structure to the
equation of state and the momentum-dependent susceptibility
(Lindard function) [26, 27].

The key new result is that we have demonstrated the
existence of different quantum critical exponents which result
not from a quantum critical point but from a quantum tri-
critical point. We therefore suggest that this quantum tri-
critical point may be a key feature more generally in quantum
critical systems and may point toward an explanation of
the many emergent non-Fermi liquid phases that have been
observed.
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